Véronique Phé

Prof. Véronique Phé (MD,PhD) is a 43-year-old urological surgeon based in Paris, where she works at Sorbonne University, Tenon Academic hospital. As of the 1st of September 2020, she has been working as Full Professor of Urology, becoming the first female urologist to have reached this academic position in France. Her field of expertise remains in functional urology. She has developed skills in reconstructive and minimally invasive surgery with robotic procedures: female artificial urinary sphincter, totally intracorporeal robotic cystectomy/ileal conduit/augmentation cystoplasty, continent urinary diversions, sacrocolpopexies, mesh complications etc. Prof. Phé is actively involved in the French and European urological community through her positions: European School of Urology Board Member, EAU (European Association of Urology) Guideline on Female LUTS panel member, Vice-President of the French Association of Urology (AFU) in charge of communication, Board Member of the French National Council of Universities, current chair of the AFU pediatric and adolescent urology committee, past chair of the EAU Young Academic Functional Urologists, past Chair of the AFU Neuro-Urology Committee, past Vice-President of the French College of Urology and General Secretary of French-speaking Group of Experts in Neuro-Urology. She is Associate Editor of European Urology Open Science. Prof. Phé is a productive urologist with more than 195 peer-reviewed scientific papers. She obtained several international and national awards, among them, the 2021 EAU Crystal Matula Award (most prestigious prize given to a <40yo promising urologist, one of the leaders of Academic European Urology), the 2014 Swiss Continence Foundation award (best contribution of a young neuro-urology talent) and the 2014 Prize of Urology of the French National Academy of Medicine. Through her dedication to academic urology and its ongoing development, she has become an established and influential leader within the International academic urology. She has been named by the the French Republic President as Knight in the National Order of Merit.

15th August 2025

Time Session
10:30
12:00
  • John DavisUnited States Speaker Open Surgery Training: Is It Necessary in the Era of Robotics?Open surgery training in the era of robotics may or may not be a training environment that urology has control of, given worldwide access to robotic or at least laparoscopic techniques and strong patient preference. There may be some applications where a given experienced urologist can prefer open over minimally invasive surgery (MIS), such as radical cystectomy, or indications possibly outside of MIS feasibility such as large renal tumors with caval thrombus. Specific to training and expertise, there are 3 principle features of surgical skills desired: 1) knowing ideal exposure, 2) recognition of surgical planes, and 3) knowing anatomy before it can be seen. Although some trainees may only see MIS for certain indications, open surgery may expedite the process. There are no human studies identified on the topic, but a skills lab study was instructive (Farah, J Surgical Education 2023) showing that interns with open and MIS training performed higher comparing pre-intern to post intern bootcamp skills. The benefits of a solid training pathway including open experience are to move trainees towards the faster-to-progress part of the learning curve such that the attending can offer a safe training environment while moving the case along efficiently.The Future of Surgical Skills Evaluation: What Is on Your Wish List?Surgical skills training vary significantly by region with some systems putting trainees on a timed set of years, while others apprentice trainees until meeting a threshold for skills. Early training assessments were basic timed events with qualitative scores (subject to strong attending selection for success). Trainees should experience and/or study the key pitfalls to avoid and performance goals. Surgical simulation can be highly useful, but tend to improve only certain skills and not full case needs. Updated simulation moves from digital to hands on surgical models and may move the needle towards human experience. Training can be augmented with descriptors of surgical gestures and measuring which ones are most effective. The experience for the trainee is often depicted as an "autonomy gap" whereby the training desires to have case control, possibly before they are ready. Progression can be measured by descriptors of performance from assistance through full performance without coaching. The next frontier will be artificial intelligence guided measurement where specific performances can be characterized and diagnosed for success. My ultimate wishlist would be for methods to correlate skills to outcomes, optimized curricula, and a specific pathway to correct underperformance.Tips and Tricks in Challenging Cases of Robotic Radical ProstatectomyThere are many specific challenges with robotic radical prostatectomy (RARP) that can be described and illustrated--the most 5 common are 1) difficulty access, 2) obesity, 3) pubic arch interference, 4) anatomic challenges, and 5) reconstruction challenges. In this video sample, we demonstrate 2 challenges: obesity requiring a pelvic lymph node dissection and significant pelvic de-fatting to identify the proper surgical landmarks. Next a massive sized prostate that has had a partial transurethral resection--together presenting challenges with landmarks, a difficult bladder neck to diagnose, and final reconstruction challenges.
  • Chun-Te WuTaiwan Moderator 健保各領域審查共識及討論-泌尿腫瘤
    Véronique PhéFrance Speaker New Artificial Urinary SphinterStress urinary incontinence remains a major quality-of-life concern, particularly following pelvic surgery. Despite being the gold standard, the AMS 800 artificial urinary sphincter (AUS) presents significant limitations, including mechanical failure, urethral atrophy, and challenges for elderly or disabled patients. Recent innovations in AUS design now incorporate mechatronics, remote control, adaptive pressure systems, and miniaturized components aimed at improving usability, autonomy, and continence outcomes. This presentation reviews the current landscape of next-generation AUS, focusing on ARTUS, UroActive®, and other devices under clinical evaluation. We discuss preclinical and first-in-human data, regulatory pathways, patient-reported preferences, and remaining barriers such as infection risks and training requirements. Intelligent, connected AUS devices hold promise to transform continence care after decades of technological stagnation.Choosing between Laparoscopic Sacrocolpopexy and Lateral Suspension: Weighing the Pros and ConsPelvic organ prolapse (POP) is a common condition requiring surgical intervention to restore apical support. Among minimally invasive options, laparoscopic sacrocolpopexy (LSCP) remains the gold standard, while laparoscopic lateral suspension (LLS) is gaining renewed interest for its reduced invasiveness and simplified technique. This presentation compares LSCP and LLS across multiple dimensions: anatomical restoration, functional outcomes, complication profiles, patient selection, and surgical learning curves. LSCP offers robust long-term results and better posterior compartment support but carries increased operative complexity. LLS provides effective anterior/apical correction with fewer vascular risks and a shorter learning curve. Both techniques have comparable mesh exposure rates and subjective success. Individualized decision-making based on patient anatomy, comorbidities, and surgeon expertise remains key. Emerging technologies and robotic assistance may further refine these approaches in the future.Robotic Novel Artificial Urinary Sphincter ImplantationThis video shows a step by step robotic artificial urinary sphincter implantation in women using AMS800 and Artus devices.First robot-assisted implantation of ARTUS (Affluent Medical) electromechanical artificial urinary sphincter in a female cadaverIntroduction Artificial urinary sphincters (AUS) are effective tools for the treatment of female stress urinary incontinence. Nonetheless, hydraulic sphincters present with some limitations: complex and time-consuming preparation, need for preserved manual dexterity and constant pressure exertion on the bladder neck. The ARTUS® Artificial Urinary Sphincter is a novel electro-mechanical device designed to overcome these limitations thanks to its rapid and straight-forward implantation, intuitive remotely controlled manipulation and continuously adjustable cuff pressure. Materials and methods The ARTUS® system is currently under pre-market investigation in men, in an interventional, prospective, single arm, multicentric, international study. A cadaver lab session was carried out in Decembre 2024 to test the technical feasibility of ARTUS® implantation in female patients. The procedure was performed by an expert surgeon with extensive experience in AUS implantation and robotic surgery. Results One female patient was successfully implanted during the session. The technique has been developed following the principles of the traditional robot-assisted AUS implantation: the patient is placed in gynecological 23° Trendelenburg position. The robot has a 4-arms configuration. The procedure starts with the dissection of the vesicovaginal plane, to approach the bladder neck posteriorly. The lateral surfaces of the bladder neck are developed on both sides. The anterior peritoneum is opened to gain access to the antero-lateral surfaces of the bladder. The separation of the bladder neck from the vagina is performed through dissection of the pre-vaginal fascia bilaterally. The cuff is introduced and it is passed through the antero-lateral peri-vesical spaces, sliding behind the bladder neck from the right side to the left side. The anterior peritoneum is opened to gain access to the anterior surface of the bladder neck. The cuff is closed anteriorly, passing the transmission line inside the hole at the distal part of the cuff. The tightening around the bladder neck is achieved by pulling the transmission cable through. An optimal adjustment of the cuff around the bladder neck is provided tightening the ARTUS cuff clamping notch. Then, a supra-pubic 4 cm skin incision is made to implant the control unit. The tip of the cuff is passed outside through the incision. A lodge is prepared incising along the external oblique muscle aponeurosis. The cuff is connected to the control unit and a test with the remote control is performed to verify the functioning of the system. Finally, the control unit is placed into the lodge, anchored with non-absorbable sutures to the aponeurosis. Conclusions Robot-assisted ARTUS® implantation is technically feasible in female patients. This straight-forward technique may reduce operative time. The device has the potential to reduce the pressure and facilitate manipulation in patients with impaired dexterity.
  • David WinkleAustralia Moderator Meatal and Fossa Navicularis Stricture Due to Lichen Sclerosus
    Howard GoldmanUnited States Speaker Anti-Cholinergics: Does Treating the Bladder Put the Brain at Risk?Recent evidence suggests an association between Overactive Bladder Anticholinergic medication and dementia. Do these medications really increase one's risk of dementia. We will examine the evidence.Surgical Treatments for Recurrent SUI/POPEven the best of surgeon's will have patients who have recurrence after a stress incontinence or pelvic organ prolapse procedure. If the recurrent is bothersome the patient may need repeat surgery. How to decide on the ideal surgery for recurrent symptoms will be examined
  • Tai-Lung ChaTaiwan Speaker Novel Target for GU Cancer Metastasis and TherapeuticsCancer progression is shaped by both cell-intrinsic adaptations and complex extrinsic interactions within the tumor microenvironment (TME). Here, we identify a transmembrane protein, Meta1, as a shared therapeutic target that exhibits a Janus-like role: promoting malignant phenotypes in cancer cells while restraining tumor-supportive functions in non-cancerous stromal and immune cells. Meta1 is expressed in both compartments of the TME, orchestrating a dual program that supports metastasis and immune evasion. Mechanistically, we uncovered a malignancy-promoting factor (MPF) that acts as a functional ligand for Meta1, selectively enhancing pro-invasive signaling in cancer cells. We further identify Meta1 as an unconventional G protein–coupled receptor (GPCR) that plays as an accelerator in cancer cells of the TME. Meta1 interacts with Rho-GDI and Gαq to activate RhoA-mediated cytoskeletal remodeling and amoeboid migration, facilitating metastatic dissemination. We further identify MPF binding to Meta1 initiates Gβγ signaling, elevating intracellular cAMP and activating Rap1, thereby amplifying cell motility and metastatic potential. Leveraging the Meta1–MPF interaction, we designed MPF-derived peptides that specifically bind Meta1 and serve as the basis for a novel peptide-based PROTAC, which efficiently induces degradation of Meta1 and abrogates its pro-metastatic functions. Our study unveils Meta1 as an atypical GPCR with canonical signaling capacity and topological divergence, representing a shared and targetable vulnerability that bridges cancer cell-intrinsic adaptation with extrinsic TME communication. These findings establish the Meta1–MPF axis as a compelling therapeutic target for suppressing metastasis and reprogramming the TME.
  • En MengTaiwan Moderator
    Chun-Hou LiaoTaiwan Speaker Regeneration Medicine in Urology - A Promising Future or Hoax?Regenerative medicine comprises therapeutic strategies aimed at restoring tissue structure and function, rather than merely alleviating symptoms. By deploying cells, biomaterials, bioactive molecules, or combinations thereof, these interventions stimulate the body’s intrinsic repair mechanisms. This paradigm extends beyond traditional symptomatic treatment, offering the potential for true self-healing and organ reconstruction—ultimately prioritizing cure over chronic disease management. Cell-based therapy has emerged as a promising intervention for various urogenital disorders, including erectile dysfunction (ED), bladder dysfunction, and male infertility. Current clinical research primarily focuses on mesenchymal stem cells (MSCs), investigating their safety, tolerability, and preliminary efficacy. Although early-phase studies suggest functional benefits—such as improved hemodynamics and tissue regeneration—most programs remain in preclinical or early clinical stages. A critical limitation remains the lack of standardization in MSC source, dose, and delivery route. Among alternative sources, human amniotic fluid-derived stem cells (hAFSCs) have shown particular promise. In preclinical models of cavernous nerve injury, hAFSCs demonstrated prolonged retention in penile tissue and in-situ differentiation into α-smooth muscle actin-positive corporal smooth muscle cells, effectively replacing damaged tissue and restoring function. These findings represent an encouraging step toward curative therapy. However, the mechanisms governing their in vivo behavior—such as engraftment, differentiation, and immunogenicity—will ultimately determine their clinical translatability and therapeutic stability. Whether cell-based approaches can evolve from experimental platforms into routine clinical care remains a central question. Platelet-Rich Plasma (PRP) Platelet-rich plasma (PRP) is an autologous biologic product enriched with supraphysiologic levels of platelets, growth factors, chemokines, and extracellular vesicles. Upon activation, PRP releases a bioactive cocktail that promotes angiogenesis, neuroregeneration, and antifibrotic remodeling—key processes in the restoration of urogenital tissues. In rodent models of cavernous nerve injury, PRP has been shown to preserve corporal sinusoidal endothelial cells and axonal scaffolds, while restoring erectile hemodynamics. Clinical studies further support PRP's safety in humans and report variable but promising improvements in IIEF scores following intracavernous injection. Nevertheless, the therapeutic response appears heterogeneous, likely influenced by patient factors, PRP preparation techniques, and injection protocols. Beyond ED, PRP has shown potential in other urologic indications such as stress urinary incontinence (SUI), interstitial cystitis/bladder pain syndrome (IC/BPS), and chronic pelvic pain, where it may contribute to tissue regeneration and symptom relief. However, broader adoption will require the establishment of individualized blood-quality metrics, standardized preparation methods, and randomized controlled trials demonstrating durable benefit. Emerging Regenerative Strategies Beyond cell-based and autologous biologics, a suite of innovative regenerative technologies is progressing from bench to bedside. These include: Energy-based devices such as low-intensity extracorporeal shock wave therapy (Li-ESWT), which promotes neovascularization and tissue regeneration via mechanotransduction pathways. Gene therapies, targeting dysfunctional or absent proteins in disorders like overactive bladder. Smart biomaterials, capable of delivering cells or bioactive molecules in a controlled, responsive manner. Extracellular vesicle (EV)-based therapeutics, which leverage cell-free vesicles derived from MSCs or urine-derived stem cells. These EVs carry signaling molecules (e.g., microRNAs, cytokines, growth factors) that mimic the paracrine effects of stem cells, offering a potentially safer and more scalable alternative to cell transplantation. In preclinical models of ED and bladder dysfunction, EVs have demonstrated the capacity to promote smooth muscle regeneration, nerve sprouting, and fibrosis reduction, with functional improvements comparable to stem cell therapy. Regenerative medicine has propelled the field of urologic tissue repair from theoretical promise to an early clinical reality. While substantial challenges remain—including the need for deeper mechanistic insight, protocol standardization, and regulatory clarity—the field is advancing rapidly. The convergence of cell therapy, PRP, EVs, and device-based modalities is creating a multifaceted toolkit for urologic regeneration. With continued scientific rigor, large-scale clinical trials, and interdisciplinary collaboration, regenerative medicine holds the potential to shift urologic care from chronic symptomatic management to durable, tissue-level cure.Stem Cell Therapy: Advancements and Clinical Insights for Erectile Dysfunction Treatment Erectile dysfunction (ED)—defined as the persistent inability to achieve or maintain an erection sufficient for satisfactory sexual activity—affects over 150 million men worldwide. While phosphodiesterase-5 inhibitors (PDE5is) remain the first-line treatment, many patients, particularly those with diabetes, age-related vascular decline, or neuropathy following radical prostatectomy, show suboptimal responses. Consequently, regenerative medicine—particularly stem-cell therapy—has gained interest for its potential to address the root causes of ED rather than merely managing symptoms. Stem-cell therapy offers a multifaceted approach to treating ED through neuroregeneration, angiogenesis, anti-apoptotic signaling, and fibrosis inhibition. Once introduced into the target tissue, stem cells can differentiate into specific cell types or exert paracrine effects via secretion of growth factors and extracellular vesicles. Among the various sources studied, bone marrow-derived mesenchymal stem cells (BM-MSCs), adipose-derived stem cells (ADSCs), and umbilical cord-derived MSCs (UC-MSCs) have been most extensively explored. Preclinical studies consistently demonstrate that MSC-based therapies enhance cavernous nerve regeneration, suppress fibrosis, and preserve endothelial integrity. In rat models of diabetes- or nerve-injury-induced ED, intracavernosal injections of ADSCs or BM-MSCs significantly restore intracavernosal pressure (ICP) and improve corpus cavernosum histology. Phase I/II clinical trials also support the safety and preliminary efficacy of stem-cell approaches. For example, in men with diabetic ED treated with autologous BM-MSCs, significant improvements in International Index of Erectile Function-5 (IIEF-5) scores and penile arterial flow have been reported without major adverse events. Similarly, ADSC therapy in post-prostatectomy ED has shown encouraging short-term results. However, large-scale trials are needed to clarify long-term efficacy, immune responses, and safety profiles. Human amniotic fluid stem cells (hAFSCs) represent a promising alternative, offering characteristics that bridge embryonic and adult stem-cell profiles. These include broad multipotency, high proliferation, and low immunogenicity—traits ideal for allogeneic use and neuroregenerative purposes. Notably, hAFSCs secrete potent regenerative mediators such as brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and insulin-like growth factor-1 (IGF-1), all of which support neurovascular repair and smooth muscle integrity. Our recent studies demonstrate, for the first time, that hAFSCs persist long-term in penile tissue and can differentiate into cavernous smooth-muscle cells, effectively replacing damaged tissue and improving erectile function even in chronic neurogenic ED models. Despite these advantages, our findings did not reveal in-vivo homing of hAFSCs to nerve injury sites or differentiation into neural tissue. This suggests a need for future studies to identify the specific microenvironmental cues required to induce such responses. Additionally, combining hAFSCs with platelet-rich plasma (PRP) may provide synergistic benefits—enhancing stem-cell homing, paracrine signaling, and in-vivo differentiation—thereby advancing a more effective, scalable, and safe therapeutic strategy.
  • Yao-Chi ChuangTaiwan Moderator Road to Excellent ResearchYao Chi Chuang, Professor of Urology, Kaohsiung Chang Gung Memorial Hospital, and National Sun Yat-sen University Taiwan. Medical research is what allows doctors to explore unmet medical need and decide how to best treat patients. It is what makes the development of new diagnostic tools, new biomarkers, new medicines, and new procedures. Without medical research, we would not be able to creative new knowledge and decide if new treatments are better than our current treatments. There are some Tips on what to do about what research is and how to get into it: 1. Ask a good question from your daily practice, what is unmet medical need? 2. Search the old literature of your research interests- what is known? What is unknown? 3. Find a new method to solve your question or an old method but applying to a new field. 4. Start from jointing a pre-planned research project, and join a research collaborative. 5. Try to be an independent researcher from a small project without funding support, retrospective study. 6. Try to get funding support from your institute, national grant, or industry. As a young doctor, it’s important to look after yourself and maintain a healthy balance between daily practice and research work. There is a range of options for doctors interested in research, from smaller time commitments as a co-investigator to longer-term projects and experience as chief investigator. Research works are all optional activities, so do what you can but don’t overwhelm yourself. Road to Excellent Research
    Chawnshang ChangUnited States Speaker The Roles of Androgen Receptor in Bladder and Kidney Cancers1- Study why prostate cancer (PCa) may develop to the castration-resistant PCa, and develop new therapy to overcome the CRPC. 2- Study the roles of androgen receptor in the bladder cancer early development and later metastasis stage. 3- Cloning the 2nd androgen receptor in the bladder cancer
TICC - 3F Banquet Hall
13:30
15:00
Updating Management Strategies for Female Pelvic Floor Dysfunction
  • Sonthidetch SivilaikulThailand Speaker Exploring Non-Surgical Treatments for Pelvic Organ Prolapse: What Does the Evidence Says?Pelvic organ prolapse (POP) is a prevalent condition among women, particularly in the postmenopausal population, and it significantly impacts quality of life. While surgical intervention remains a definitive treatment for moderate to severe cases, non-surgical management has garnered increasing attention as a viable alternative, especially for women who are asymptomatic, medically unfit for surgery, or prefer conservative options. This review explores current evidence regarding non-surgical therapies for POP, focusing on pelvic floor muscle training (PFMT), pessary use, lifestyle modifications, and emerging modalities such as vaginal estrogen therapy and electrical stimulation. Clinical trials and meta-analyses suggest that PFMT can improve prolapse symptoms and halt progression in early-stage POP, while pessaries offer an effective mechanical solution for symptom relief and support. However, the quality of evidence varies, with many studies limited by small sample sizes and heterogeneity in outcome measures. Ultimately, non-surgical treatments serve as an important component of personalized care strategies for managing POP.
  • Sakineh HajebrahimiIran Speaker Surgical Options for Apical Prolapse: Comparing Trans-Vaginal and Trans-Abdominal Approaches Surgical Options for Apical Prolapse: Comparing Transvaginal and Transabdominal Approaches Background Apical prolapse represents a significant subset of pelvic organ prolapse cases and can profoundly impact quality of life. Surgical correction remains the cornerstone of management, with both transvaginal and transabdominal approaches offering distinct advantages and limitations. The optimal surgical pathway continues to be debated among pelvic floor surgeons. Objective To critically compare transvaginal and transabdominal surgical approaches for apical prolapse, focusing on anatomical and functional outcomes, complication profiles, and long-term durability. Methods A comprehensive review of current literature, including randomized controlled trials, prospective cohort studies, and meta-analyses, was performed. Surgical techniques assessed included vaginal sacrospinous ligament fixation, uterosacral ligament suspension, and transabdominal sacrocolpopexy (open, laparoscopic, and robotic-assisted). Outcome measures included anatomical success rates, recurrence rates, functional urinary and sexual outcomes, operative morbidity, and patient-reported quality of life. Results Transabdominal sacrocolpopexy demonstrates superior long-term anatomical durability and lower recurrence rates, particularly for advanced prolapse, but is associated with longer operative time and higher perioperative morbidity. Transvaginal approaches offer shorter recovery times, lower immediate postoperative complications, and feasibility in high-risk surgical candidates, but may have higher rates of recurrent prolapse over extended follow-up. Minimally invasive abdominal approaches, especially robotic-assisted techniques, may bridge the gap between durability and reduced morbidity. Conclusion Choice of surgical approach for apical prolapse should be individualized, balancing patient-specific anatomical, functional, and comorbidity profiles against surgeon expertise and available resources. Ongoing high-quality comparative studies are essential to refine patient selection criteria and optimize long-term outcomes. Keywords Apical prolapse, sacrocolpopexy, sacrospinous fixation, transvaginal surgery, pelvic floor reconstruction, robotic surgery
  • Véronique PhéFrance Speaker New Artificial Urinary SphinterStress urinary incontinence remains a major quality-of-life concern, particularly following pelvic surgery. Despite being the gold standard, the AMS 800 artificial urinary sphincter (AUS) presents significant limitations, including mechanical failure, urethral atrophy, and challenges for elderly or disabled patients. Recent innovations in AUS design now incorporate mechatronics, remote control, adaptive pressure systems, and miniaturized components aimed at improving usability, autonomy, and continence outcomes. This presentation reviews the current landscape of next-generation AUS, focusing on ARTUS, UroActive®, and other devices under clinical evaluation. We discuss preclinical and first-in-human data, regulatory pathways, patient-reported preferences, and remaining barriers such as infection risks and training requirements. Intelligent, connected AUS devices hold promise to transform continence care after decades of technological stagnation.Choosing between Laparoscopic Sacrocolpopexy and Lateral Suspension: Weighing the Pros and ConsPelvic organ prolapse (POP) is a common condition requiring surgical intervention to restore apical support. Among minimally invasive options, laparoscopic sacrocolpopexy (LSCP) remains the gold standard, while laparoscopic lateral suspension (LLS) is gaining renewed interest for its reduced invasiveness and simplified technique. This presentation compares LSCP and LLS across multiple dimensions: anatomical restoration, functional outcomes, complication profiles, patient selection, and surgical learning curves. LSCP offers robust long-term results and better posterior compartment support but carries increased operative complexity. LLS provides effective anterior/apical correction with fewer vascular risks and a shorter learning curve. Both techniques have comparable mesh exposure rates and subjective success. Individualized decision-making based on patient anatomy, comorbidities, and surgeon expertise remains key. Emerging technologies and robotic assistance may further refine these approaches in the future.Robotic Novel Artificial Urinary Sphincter ImplantationThis video shows a step by step robotic artificial urinary sphincter implantation in women using AMS800 and Artus devices.First robot-assisted implantation of ARTUS (Affluent Medical) electromechanical artificial urinary sphincter in a female cadaverIntroduction Artificial urinary sphincters (AUS) are effective tools for the treatment of female stress urinary incontinence. Nonetheless, hydraulic sphincters present with some limitations: complex and time-consuming preparation, need for preserved manual dexterity and constant pressure exertion on the bladder neck. The ARTUS® Artificial Urinary Sphincter is a novel electro-mechanical device designed to overcome these limitations thanks to its rapid and straight-forward implantation, intuitive remotely controlled manipulation and continuously adjustable cuff pressure. Materials and methods The ARTUS® system is currently under pre-market investigation in men, in an interventional, prospective, single arm, multicentric, international study. A cadaver lab session was carried out in Decembre 2024 to test the technical feasibility of ARTUS® implantation in female patients. The procedure was performed by an expert surgeon with extensive experience in AUS implantation and robotic surgery. Results One female patient was successfully implanted during the session. The technique has been developed following the principles of the traditional robot-assisted AUS implantation: the patient is placed in gynecological 23° Trendelenburg position. The robot has a 4-arms configuration. The procedure starts with the dissection of the vesicovaginal plane, to approach the bladder neck posteriorly. The lateral surfaces of the bladder neck are developed on both sides. The anterior peritoneum is opened to gain access to the antero-lateral surfaces of the bladder. The separation of the bladder neck from the vagina is performed through dissection of the pre-vaginal fascia bilaterally. The cuff is introduced and it is passed through the antero-lateral peri-vesical spaces, sliding behind the bladder neck from the right side to the left side. The anterior peritoneum is opened to gain access to the anterior surface of the bladder neck. The cuff is closed anteriorly, passing the transmission line inside the hole at the distal part of the cuff. The tightening around the bladder neck is achieved by pulling the transmission cable through. An optimal adjustment of the cuff around the bladder neck is provided tightening the ARTUS cuff clamping notch. Then, a supra-pubic 4 cm skin incision is made to implant the control unit. The tip of the cuff is passed outside through the incision. A lodge is prepared incising along the external oblique muscle aponeurosis. The cuff is connected to the control unit and a test with the remote control is performed to verify the functioning of the system. Finally, the control unit is placed into the lodge, anchored with non-absorbable sutures to the aponeurosis. Conclusions Robot-assisted ARTUS® implantation is technically feasible in female patients. This straight-forward technique may reduce operative time. The device has the potential to reduce the pressure and facilitate manipulation in patients with impaired dexterity.
  • Howard GoldmanUnited States Speaker Anti-Cholinergics: Does Treating the Bladder Put the Brain at Risk?Recent evidence suggests an association between Overactive Bladder Anticholinergic medication and dementia. Do these medications really increase one's risk of dementia. We will examine the evidence.Surgical Treatments for Recurrent SUI/POPEven the best of surgeon's will have patients who have recurrence after a stress incontinence or pelvic organ prolapse procedure. If the recurrent is bothersome the patient may need repeat surgery. How to decide on the ideal surgery for recurrent symptoms will be examined
  • Raymond Wai-Man KanHong Kong, China Speaker Female Bladder Outlet Obstruction & Urinary Retention: Considerations beyond POPFemale bladder outlet obstruction has been an under-recognised disease entity, however that does not imply the rarity of this condition. There are limitations in urodynamic evaluation for this condition and fluoroscopy can often help in the decision making process. Urinary retention in women shares common etiology with bladder outlet obstruction, unlike men however, these two groups of patient do not overlap as much. Management of women with bladder outlet obstruction and urinary retention should be individualised.
TICC - 2F 201DE

16th August 2025

Time Session
13:30
15:00
  • Yao-Chi ChuangTaiwan Moderator Road to Excellent ResearchYao Chi Chuang, Professor of Urology, Kaohsiung Chang Gung Memorial Hospital, and National Sun Yat-sen University Taiwan. Medical research is what allows doctors to explore unmet medical need and decide how to best treat patients. It is what makes the development of new diagnostic tools, new biomarkers, new medicines, and new procedures. Without medical research, we would not be able to creative new knowledge and decide if new treatments are better than our current treatments. There are some Tips on what to do about what research is and how to get into it: 1. Ask a good question from your daily practice, what is unmet medical need? 2. Search the old literature of your research interests- what is known? What is unknown? 3. Find a new method to solve your question or an old method but applying to a new field. 4. Start from jointing a pre-planned research project, and join a research collaborative. 5. Try to be an independent researcher from a small project without funding support, retrospective study. 6. Try to get funding support from your institute, national grant, or industry. As a young doctor, it’s important to look after yourself and maintain a healthy balance between daily practice and research work. There is a range of options for doctors interested in research, from smaller time commitments as a co-investigator to longer-term projects and experience as chief investigator. Research works are all optional activities, so do what you can but don’t overwhelm yourself. Road to Excellent Research
    Po-Ming ChowTaiwan Speaker Conventional Artificial Urinary Sphincter ImplantationA step-by-step video of a standard approach of AUS implatation is shown in this semi-live session.
  • Yao-Chi ChuangTaiwan Moderator Road to Excellent ResearchYao Chi Chuang, Professor of Urology, Kaohsiung Chang Gung Memorial Hospital, and National Sun Yat-sen University Taiwan. Medical research is what allows doctors to explore unmet medical need and decide how to best treat patients. It is what makes the development of new diagnostic tools, new biomarkers, new medicines, and new procedures. Without medical research, we would not be able to creative new knowledge and decide if new treatments are better than our current treatments. There are some Tips on what to do about what research is and how to get into it: 1. Ask a good question from your daily practice, what is unmet medical need? 2. Search the old literature of your research interests- what is known? What is unknown? 3. Find a new method to solve your question or an old method but applying to a new field. 4. Start from jointing a pre-planned research project, and join a research collaborative. 5. Try to be an independent researcher from a small project without funding support, retrospective study. 6. Try to get funding support from your institute, national grant, or industry. As a young doctor, it’s important to look after yourself and maintain a healthy balance between daily practice and research work. There is a range of options for doctors interested in research, from smaller time commitments as a co-investigator to longer-term projects and experience as chief investigator. Research works are all optional activities, so do what you can but don’t overwhelm yourself. Road to Excellent Research
    Véronique PhéFrance Speaker New Artificial Urinary SphinterStress urinary incontinence remains a major quality-of-life concern, particularly following pelvic surgery. Despite being the gold standard, the AMS 800 artificial urinary sphincter (AUS) presents significant limitations, including mechanical failure, urethral atrophy, and challenges for elderly or disabled patients. Recent innovations in AUS design now incorporate mechatronics, remote control, adaptive pressure systems, and miniaturized components aimed at improving usability, autonomy, and continence outcomes. This presentation reviews the current landscape of next-generation AUS, focusing on ARTUS, UroActive®, and other devices under clinical evaluation. We discuss preclinical and first-in-human data, regulatory pathways, patient-reported preferences, and remaining barriers such as infection risks and training requirements. Intelligent, connected AUS devices hold promise to transform continence care after decades of technological stagnation.Choosing between Laparoscopic Sacrocolpopexy and Lateral Suspension: Weighing the Pros and ConsPelvic organ prolapse (POP) is a common condition requiring surgical intervention to restore apical support. Among minimally invasive options, laparoscopic sacrocolpopexy (LSCP) remains the gold standard, while laparoscopic lateral suspension (LLS) is gaining renewed interest for its reduced invasiveness and simplified technique. This presentation compares LSCP and LLS across multiple dimensions: anatomical restoration, functional outcomes, complication profiles, patient selection, and surgical learning curves. LSCP offers robust long-term results and better posterior compartment support but carries increased operative complexity. LLS provides effective anterior/apical correction with fewer vascular risks and a shorter learning curve. Both techniques have comparable mesh exposure rates and subjective success. Individualized decision-making based on patient anatomy, comorbidities, and surgeon expertise remains key. Emerging technologies and robotic assistance may further refine these approaches in the future.Robotic Novel Artificial Urinary Sphincter ImplantationThis video shows a step by step robotic artificial urinary sphincter implantation in women using AMS800 and Artus devices.First robot-assisted implantation of ARTUS (Affluent Medical) electromechanical artificial urinary sphincter in a female cadaverIntroduction Artificial urinary sphincters (AUS) are effective tools for the treatment of female stress urinary incontinence. Nonetheless, hydraulic sphincters present with some limitations: complex and time-consuming preparation, need for preserved manual dexterity and constant pressure exertion on the bladder neck. The ARTUS® Artificial Urinary Sphincter is a novel electro-mechanical device designed to overcome these limitations thanks to its rapid and straight-forward implantation, intuitive remotely controlled manipulation and continuously adjustable cuff pressure. Materials and methods The ARTUS® system is currently under pre-market investigation in men, in an interventional, prospective, single arm, multicentric, international study. A cadaver lab session was carried out in Decembre 2024 to test the technical feasibility of ARTUS® implantation in female patients. The procedure was performed by an expert surgeon with extensive experience in AUS implantation and robotic surgery. Results One female patient was successfully implanted during the session. The technique has been developed following the principles of the traditional robot-assisted AUS implantation: the patient is placed in gynecological 23° Trendelenburg position. The robot has a 4-arms configuration. The procedure starts with the dissection of the vesicovaginal plane, to approach the bladder neck posteriorly. The lateral surfaces of the bladder neck are developed on both sides. The anterior peritoneum is opened to gain access to the antero-lateral surfaces of the bladder. The separation of the bladder neck from the vagina is performed through dissection of the pre-vaginal fascia bilaterally. The cuff is introduced and it is passed through the antero-lateral peri-vesical spaces, sliding behind the bladder neck from the right side to the left side. The anterior peritoneum is opened to gain access to the anterior surface of the bladder neck. The cuff is closed anteriorly, passing the transmission line inside the hole at the distal part of the cuff. The tightening around the bladder neck is achieved by pulling the transmission cable through. An optimal adjustment of the cuff around the bladder neck is provided tightening the ARTUS cuff clamping notch. Then, a supra-pubic 4 cm skin incision is made to implant the control unit. The tip of the cuff is passed outside through the incision. A lodge is prepared incising along the external oblique muscle aponeurosis. The cuff is connected to the control unit and a test with the remote control is performed to verify the functioning of the system. Finally, the control unit is placed into the lodge, anchored with non-absorbable sutures to the aponeurosis. Conclusions Robot-assisted ARTUS® implantation is technically feasible in female patients. This straight-forward technique may reduce operative time. The device has the potential to reduce the pressure and facilitate manipulation in patients with impaired dexterity.
  • Yao-Chi ChuangTaiwan Moderator Road to Excellent ResearchYao Chi Chuang, Professor of Urology, Kaohsiung Chang Gung Memorial Hospital, and National Sun Yat-sen University Taiwan. Medical research is what allows doctors to explore unmet medical need and decide how to best treat patients. It is what makes the development of new diagnostic tools, new biomarkers, new medicines, and new procedures. Without medical research, we would not be able to creative new knowledge and decide if new treatments are better than our current treatments. There are some Tips on what to do about what research is and how to get into it: 1. Ask a good question from your daily practice, what is unmet medical need? 2. Search the old literature of your research interests- what is known? What is unknown? 3. Find a new method to solve your question or an old method but applying to a new field. 4. Start from jointing a pre-planned research project, and join a research collaborative. 5. Try to be an independent researcher from a small project without funding support, retrospective study. 6. Try to get funding support from your institute, national grant, or industry. As a young doctor, it’s important to look after yourself and maintain a healthy balance between daily practice and research work. There is a range of options for doctors interested in research, from smaller time commitments as a co-investigator to longer-term projects and experience as chief investigator. Research works are all optional activities, so do what you can but don’t overwhelm yourself. Road to Excellent Research
    Ching-Pei TsaiTaiwan Speaker Robotic/Laparoscopic Sacrocolpopexy and Pelvic Floor ReconstructionAbdominal sacrocolpopexy has been the gold standard operation for POP. Currently, the trend is minimal-invasive surgeries such as laparoscopy(LSC) or robot-assisted laparoscopy(RASC) to promote recovery. However, surgeons hesitated to do it because of longer learning curve and complicated surgical procedures. How to simplify the above operations is the most important issue. The use of robotic assisted surgery has grown since the advent of better wrist dexterity, a 3D view, and motion scaling, which has great advantages in performing sacrocolpopexy. But the efficacy of RASC and LSC is comparable as indicated in previous studies, and the only difference is less bleeding with the RASC.
  • Yu-Chao HsuTaiwan Moderator
    Cheng-Chia LinTaiwan Speaker DISS plus FANS used in RIRSNew technologies and techniques are constantly emerging, but the most important part of our discussions is how to use them most effectively. Through this surgical demonstration, we hope to share the procedure and our experience with everyone.健保各領域審查共識及討論-結石
  • Yi-Sheng TaiTaiwan Speaker Which Laser for RIRS: Thulium Fiber Laser Thulium Fiber Laser (TFL)is a type of fiber laser, distinct from Thulium laser used for prostate surgey. ​It’ a cutting-edge laser and rapidly gaining traction in urology ​The machine is compact, portable, quiet with air-cooling, and lower power consumption.It employs a thulium-doped silica fiber powered by diode lasers, emitting light at 1940 nm, matching water absorption peaks. ​This results in a high absorption coefficient and shallow penetration (~0.1 mm), enabling precise energy delivery and minimizing tissue damage.​Compared to Holmium lasers, TFL operates at lower energies (down to 25mJ) and higher frequencies (up to 2000Hz) for delicate tissue ablation and fine stone dusting.​ ​ The most notable change is pulse modulation​Ho:YAG lasers has Spike-shaped pulses and indicate greater energy concentration, resulting in higher localized heating, uneven fragmentation, and increased retropulsion.​TFL produces pulses with uniform energy distribution and lower peak power, resulting in consistent ablation with less retropulsion and fewer thermal spikes.​Higher water absorption rapidly forms a vapor channel, enhancing ablation efficiency. But, TFL is not as ideal in surgical scenarios. ​At settings of low pulse energy (0.2 J) and high frequency (100 Hz), it tends to cause troublesome char formation and spark generation, particularly when treating calcium phosphate stones. ​These phenomena, explosive combustion and carbonization can reduce ablation efficiency and increase the risk of thermal damage and fiber degradation. ​Optimizing TFL settings is very important for outcome and safety and ongoing evaluation. ​AI in Medical Imaging – Converting 2D Black & White to 3D and Applications in Mixed Reality (MR) used in RIRS Artificial Intelligence (AI) and Extended Reality (XR) are at the forefront of innovation in modern medicine. In endoscopic surgery, these technologies are increasingly being integrated to enhance procedural precision and intraoperative guidance. One experimental application involves using AI to convert 2D CT scans into 3D visualizations, offering surgeons a more intuitive understanding of anatomical structures. Devices like the Apple Vision Pro may be used to create fully immersive virtual environments, although it is not currently approved as a medical device. In clinical practice, Mixed Reality (MR)—which blends real and virtual environments with real-time interaction—has shown promise. MR has been used during Retrograde Intrarenal Surgery (RIRS) to reduce the risk of missed stones, and in Endoscopic Combined Intrarenal Surgery (ECIRS) to overlay anatomical data, improving puncture accuracy during Percutaneous Nephrolithotomy (PCN). As an emerging field, further advancements will depend on enhanced imaging resolution, improved intrarenal navigation and integration of AI-driven real-time stone detection.
  • Hsiang-Ying LeeTaiwan Moderator Best Laser for UTUCManagement of Total Ureteral Avulsion during Ureteroscopy
    Yi-Yang LiuTaiwan Speaker Complex Renal Stone: PCNL or RIRS or Combination?Mini-percutaneous nephrolithotomy (mini-PCNL) provides stone-free rate (SFR) 85 to 95 % in children with complex burdens, and recent systematic reviews report overall complications < 7 % and transfusion requirements ≈3 % when tracts ≤18 Fr are used. Its drawbacks are the need for percutaneous access, risk of bleeding, and potential parenchymal scarring, especially when multiple tracts are required. Retrograde intrarenal surgery (RIRS) avoids renal puncture and shows the lowest incidence of high-grade complications (<1 %); contemporary series in preschool children describe initial SFRs of 60–78 %, with secondary procedures needed in up to one-third of cases because of narrow, tortuous ureters. Pre-stenting, staged dilation and longer operative time can offset its minimally-invasive appeal for stones ≥2 cm. Endoscopic combined intrarenal surgery (ECIRS) merges an antegrade mini-PCNL channel with simultaneous flexible ureteroscopy. The first multicenter pediatric series and a 2024 comparative study confirm SFRs of 75–92 %, shorter hospital stay and lower fluoroscopy or transfusion risk than standalone PCNL despite treating more complex stones. Its limitations are the need for two skilled teams, specialized equipment and the Galdakao-modified supine Valdivia position, which lengthen setup and raise costs. In summary, mini-PCNL remains the most efficient monotherapy for large or staghorn calculi; RIRS is ideal when bleeding risk or unfavorable percutaneous windows predominate; ECIRS offers the best compromise between clearance and morbidity where resources and expertise allow. Individualized, anatomy-based algorithms and further pediatric RCTs are still required. ECIRSIn this session, we will demonstrate the technique about Totally-X-ray free ultrasound guided endoscopic combind intrarenal surgery in Galdakao modified supine Valdivia position.A Critical Appraisal on Percutaneous NephrolithotripsyPercutaneous nephrolithotripsy (PCNL) has evolved from a uniform prone, fluoroscopy-guided, large-tract technique into a precision endourological platform that emphasizes patient-tailored positioning, radiation-free puncture, miniaturized tracts, energy-efficient lasers and nascent robotic–AI augmentation. Contemporary evidence affirms that stone-free rates now approach a plateau, making safety metrics—bleeding control, infection prevention and intrarenal pressure modulation—the key differentiators among modern approaches. Miniaturized optics, suction-regulated sheaths and thulium-fiber or dual-wavelength laser consoles have collectively reduced hemoglobin loss and postoperative sepsis while preserving clearance efficacy. Future success will hinge on harmonizing technological innovation with rigorous evidence so that every incremental advance translates into measurable gains for both efficacy and safety in stone surgery.Echo guide Puncture in Supine PCNL: Tips and Tricks for an Efficient and Safe ProcedureMastery of ultrasound-guided supine PCNL begins with precise anatomical orientation. Color-Doppler mapping pinpoints the target calyx, which is punctured transpapillary with an echogenic-tip needle after artificial hydronephrosis is produced by retrograde ureteroscopic irrigation. A hydrophilic, floppy-tip yet stiff-shaft guidewire is then advanced through the needle, allowing atraumatic navigation of the collecting system under ureteroscopic visualization. Balloon dilation—used in place of sequential dilators—prevents guidewire dislodgement. When necessary, a through-and-through guidewire from flank skin to urethral meatus may be created to secure renal access. Finally, antegrade nephroscopy along this coaxial tract confirms unobstructed entry, provides panoramic inspection, and optimizes lithotripsy efficiency—all without fluoroscopy. Collectively, these steps deliver reliable access, eliminate radiation, and streamline stone clearance in a single, ergonomically favorable supine position.
TICC - 3F Plenary Hall