Shih-Ting Chiu

Dr. Shih-Ting joined National Taiwan University Hospital after completing a residency in urology at the National Taiwan University Hospital and a fellowship in Fu Jen Catholic University Hospital. He has interests in MRI/TRUS fusion-guided prostate biopsies via transperineal route. He also specialized in focal therapy for prostate cancer, including noninvasive techniques such as High Intensity Focused Ultrasound (HIFU) and irreversible electroporation (IRE).

16th August 2025

Time Session
13:30
15:00
  • Jeremy TeohHong Kong, China Moderator Transurethral En Bloc Resection of Bladder Tumor: Where Are We Now?There is increasing evidence that transurethral en bloc resection of bladder tumour (ERBT) could lead to better peri-operative and oncological outcomes in patients with non-muscle-invasive bladder cancer. Modified approaches of ERBT have also been proposed to expand its indications for larger bladder tumours. The quality of resection is also the key for bladder-sparing treatment for muscle-invasive bladder cancer. We foresee an exciting journey ahead for ERBT, and as a urologist, we must embrace this novel technique for the best interest of our bladder cancer patients. To Publish or not to Publish? Navigating the path to academia in urologyDoing good science is the basis for technological advancement in healthcare. However, pursuing a path to academic in urology is often tough, stressful and frustrating. In this talk, I will share with you what I have learnt throughout my 15 years of research work. I will let you know what's the best and fastest way to become a globally renowned and successful researcher. Most importantly, I will explain what it takes to develop a great team and create a positive impact in people's lives. Believe in yourself! If I can do it, so can you.SIU Lecture: Role of MISTs in Male LUTS Surgical Management (Will TUR-P/ Laser Prostatectomy be Replaced?)Transurethral resection of prostate (TURP) is the current gold standard in treating patients with benign prostatic hyperplasia. Laser prostatectomy has also been used widely especially in patients who are on anticoagulants. However, both TURP and laser prostatectomy are associated with several problems including the need of spinal / general anaesthesia and the risk of male sexual dysfunction. In the past decade, we have witnessed the introduction of multiple new technologies including Rezum, Urolift, iTind and Aquablation. in this SIU lecture, we will discuss about the technical details, as well as the pros and cons of every new technology. We will also invite you to be our jury and decide whether TURP and laser prostatectomy will be replaced in the future. Novel Intravesical Therapeutics in the Evolving Landscape of NMIBCNon-muscle-invasive bladder cancer (NMIBC) is well known to be a difficult disease to manage, with a 1-year recurrence rate of up to 61% and 5-year recurrence rate of 78%. Despite the use of intravesical BCG therapy, NMIBC patients may still experience recurrence and develop what we call BCG-unresponsive NMIBC. Conventionally, we offer upfront radical cystectomy for patients with BCG-unresponsive NMIBC, however, this is an ultra-major surgery with significant risk of complications and could also lead to significant deterioration in quality of life in the long run. We are in urgent need for novel therapies to manage this difficult condition. In this lecture, we will discuss the evidence on the different novel intravesical therapies in treating BCG-unresponsive NMIBC. SIU Lecture: Role of MISTs in Male LUTS Surgical Management (Will TUR-P/ Laser Prostatectomy be Replaced?)
    Chih-Chieh LinTaiwan Facilitator Vesico-Vaginal Fistula: General Concept and Patient Preparation健保各領域審查共識及討論-功能性
    Shih-Ting ChiuTaiwan Facilitator
    Giorgio BozziniItaly Speaker The Power of Magneto and Vapour Tunnel in Holep
    Steven L. ChangUnited States Speaker The Progression Landscape of Diagnostic and Treatment Options for Kidney CancerPros and Cons in the daVinci SP System Applications in Urological Surgeries
    Simone CrivellaroUnited States Speaker Single-Port vs. Multi-Port Robotic Prostatectomy: Balancing Innovation, Precision, and OutcomesThe Application & Limitation of Urological SP SurgerySingle Port Retroperitoneal Partial NephrectomySingle Port Prostate Surgery
TICC - 1F 102

17th August 2025

Time Session
12:00
13:00
A New Era in Precision Diagnosis and Localized Therapy in PCa with Micro-Ultrasound (ExactVu) and Focal One Robotic HIFU
  • Tai-Lung ChaTaiwan Moderator Novel Target for GU Cancer Metastasis and TherapeuticsCancer progression is shaped by both cell-intrinsic adaptations and complex extrinsic interactions within the tumor microenvironment (TME). Here, we identify a transmembrane protein, Meta1, as a shared therapeutic target that exhibits a Janus-like role: promoting malignant phenotypes in cancer cells while restraining tumor-supportive functions in non-cancerous stromal and immune cells. Meta1 is expressed in both compartments of the TME, orchestrating a dual program that supports metastasis and immune evasion. Mechanistically, we uncovered a malignancy-promoting factor (MPF) that acts as a functional ligand for Meta1, selectively enhancing pro-invasive signaling in cancer cells. We further identify Meta1 as an unconventional G protein–coupled receptor (GPCR) that plays as an accelerator in cancer cells of the TME. Meta1 interacts with Rho-GDI and Gαq to activate RhoA-mediated cytoskeletal remodeling and amoeboid migration, facilitating metastatic dissemination. We further identify MPF binding to Meta1 initiates Gβγ signaling, elevating intracellular cAMP and activating Rap1, thereby amplifying cell motility and metastatic potential. Leveraging the Meta1–MPF interaction, we designed MPF-derived peptides that specifically bind Meta1 and serve as the basis for a novel peptide-based PROTAC, which efficiently induces degradation of Meta1 and abrogates its pro-metastatic functions. Our study unveils Meta1 as an atypical GPCR with canonical signaling capacity and topological divergence, representing a shared and targetable vulnerability that bridges cancer cell-intrinsic adaptation with extrinsic TME communication. These findings establish the Meta1–MPF axis as a compelling therapeutic target for suppressing metastasis and reprogramming the TME.
  • Tai-Lung ChaTaiwan Moderator Novel Target for GU Cancer Metastasis and TherapeuticsCancer progression is shaped by both cell-intrinsic adaptations and complex extrinsic interactions within the tumor microenvironment (TME). Here, we identify a transmembrane protein, Meta1, as a shared therapeutic target that exhibits a Janus-like role: promoting malignant phenotypes in cancer cells while restraining tumor-supportive functions in non-cancerous stromal and immune cells. Meta1 is expressed in both compartments of the TME, orchestrating a dual program that supports metastasis and immune evasion. Mechanistically, we uncovered a malignancy-promoting factor (MPF) that acts as a functional ligand for Meta1, selectively enhancing pro-invasive signaling in cancer cells. We further identify Meta1 as an unconventional G protein–coupled receptor (GPCR) that plays as an accelerator in cancer cells of the TME. Meta1 interacts with Rho-GDI and Gαq to activate RhoA-mediated cytoskeletal remodeling and amoeboid migration, facilitating metastatic dissemination. We further identify MPF binding to Meta1 initiates Gβγ signaling, elevating intracellular cAMP and activating Rap1, thereby amplifying cell motility and metastatic potential. Leveraging the Meta1–MPF interaction, we designed MPF-derived peptides that specifically bind Meta1 and serve as the basis for a novel peptide-based PROTAC, which efficiently induces degradation of Meta1 and abrogates its pro-metastatic functions. Our study unveils Meta1 as an atypical GPCR with canonical signaling capacity and topological divergence, representing a shared and targetable vulnerability that bridges cancer cell-intrinsic adaptation with extrinsic TME communication. These findings establish the Meta1–MPF axis as a compelling therapeutic target for suppressing metastasis and reprogramming the TME.
  • Cary Nobles RobertsonUnited States Speaker Latest Clinical Data and Operative Technique on Focal One Robotic HIFU Therapy for Prostate CancerThe lecture will cover the latest clinical data and operative advancements in Focal One Robotic High-Intensity Focused Ultrasound (HIFU) therapy for the treatment of prostate cancer. Focal One marks a significant advancement in minimally invasive, organ-sparing treatment. This technology integrates real-time MRI and ultrasound imaging with robotic precision to deliver highly focused ultrasound energy directly to cancerous prostate tissue—while minimizing damage to surrounding healthy structures.
    Tai-Lung ChaTaiwan Moderator Novel Target for GU Cancer Metastasis and TherapeuticsCancer progression is shaped by both cell-intrinsic adaptations and complex extrinsic interactions within the tumor microenvironment (TME). Here, we identify a transmembrane protein, Meta1, as a shared therapeutic target that exhibits a Janus-like role: promoting malignant phenotypes in cancer cells while restraining tumor-supportive functions in non-cancerous stromal and immune cells. Meta1 is expressed in both compartments of the TME, orchestrating a dual program that supports metastasis and immune evasion. Mechanistically, we uncovered a malignancy-promoting factor (MPF) that acts as a functional ligand for Meta1, selectively enhancing pro-invasive signaling in cancer cells. We further identify Meta1 as an unconventional G protein–coupled receptor (GPCR) that plays as an accelerator in cancer cells of the TME. Meta1 interacts with Rho-GDI and Gαq to activate RhoA-mediated cytoskeletal remodeling and amoeboid migration, facilitating metastatic dissemination. We further identify MPF binding to Meta1 initiates Gβγ signaling, elevating intracellular cAMP and activating Rap1, thereby amplifying cell motility and metastatic potential. Leveraging the Meta1–MPF interaction, we designed MPF-derived peptides that specifically bind Meta1 and serve as the basis for a novel peptide-based PROTAC, which efficiently induces degradation of Meta1 and abrogates its pro-metastatic functions. Our study unveils Meta1 as an atypical GPCR with canonical signaling capacity and topological divergence, representing a shared and targetable vulnerability that bridges cancer cell-intrinsic adaptation with extrinsic TME communication. These findings establish the Meta1–MPF axis as a compelling therapeutic target for suppressing metastasis and reprogramming the TME.
  • Tai-Lung ChaTaiwan Moderator Novel Target for GU Cancer Metastasis and TherapeuticsCancer progression is shaped by both cell-intrinsic adaptations and complex extrinsic interactions within the tumor microenvironment (TME). Here, we identify a transmembrane protein, Meta1, as a shared therapeutic target that exhibits a Janus-like role: promoting malignant phenotypes in cancer cells while restraining tumor-supportive functions in non-cancerous stromal and immune cells. Meta1 is expressed in both compartments of the TME, orchestrating a dual program that supports metastasis and immune evasion. Mechanistically, we uncovered a malignancy-promoting factor (MPF) that acts as a functional ligand for Meta1, selectively enhancing pro-invasive signaling in cancer cells. We further identify Meta1 as an unconventional G protein–coupled receptor (GPCR) that plays as an accelerator in cancer cells of the TME. Meta1 interacts with Rho-GDI and Gαq to activate RhoA-mediated cytoskeletal remodeling and amoeboid migration, facilitating metastatic dissemination. We further identify MPF binding to Meta1 initiates Gβγ signaling, elevating intracellular cAMP and activating Rap1, thereby amplifying cell motility and metastatic potential. Leveraging the Meta1–MPF interaction, we designed MPF-derived peptides that specifically bind Meta1 and serve as the basis for a novel peptide-based PROTAC, which efficiently induces degradation of Meta1 and abrogates its pro-metastatic functions. Our study unveils Meta1 as an atypical GPCR with canonical signaling capacity and topological divergence, representing a shared and targetable vulnerability that bridges cancer cell-intrinsic adaptation with extrinsic TME communication. These findings establish the Meta1–MPF axis as a compelling therapeutic target for suppressing metastasis and reprogramming the TME.
    Cary Nobles RobertsonUnited States Speaker Latest Clinical Data and Operative Technique on Focal One Robotic HIFU Therapy for Prostate CancerThe lecture will cover the latest clinical data and operative advancements in Focal One Robotic High-Intensity Focused Ultrasound (HIFU) therapy for the treatment of prostate cancer. Focal One marks a significant advancement in minimally invasive, organ-sparing treatment. This technology integrates real-time MRI and ultrasound imaging with robotic precision to deliver highly focused ultrasound energy directly to cancerous prostate tissue—while minimizing damage to surrounding healthy structures.
TICC - 2F 201BC