Home
Abstract
My Abstract(s)
Login
ePosters
Back
Final Presentation Format
Moderated Poster Abstract
Eposter Presentation
Eposter in PDF Format
https://storage.unitedwebnetwork.com/files/1237/2512632259db44a543c8a9c34e01a04b.pdf
Accept format: PDF. The file size should not be more than 5MB
Eposter in Image Format
https://storage.unitedwebnetwork.com/files/1237/55e08a8062afeb51b11ff6e8b4f87a76.jpg
Accept format: PNG/JPG/WEBP. The file size should not be more than 2MB
Presentation Date / Time
Submission Status
Submitted
Abstract
Abstract Title
Identification of putative prognostic genes associated with neddylation in prostate cancer
Presentation Type
Moderated Poster Abstract
Manuscript Type
Basic Research
Abstract Category *
Oncology: Prostate
Author's Information
Number of Authors (including submitting/presenting author) *
3
No more than 10 authors can be listed (as per the Good Publication Practice (GPP) Guidelines).
Please ensure the authors are listed in the right order.
Country
China
Co-author 1
Yinglong Huang huangyinglong@kmmu.edu.cn The Second Affiliated Hospital of Kunming Medical University Department of Urology Kunming China *
Co-author 2
Chen Gong gongchen@kmmu.edu.cn The Second Affiliated Hospital of Kunming Medical University Department of Urology Kunming China
Co-author 3
Mingxia Ding dingmingxia@kmmu.edu.cn The Second Affiliated Hospital of Kunming Medical University Department of Urology Kunming China
Co-author 4
Co-author 5
Co-author 6
Co-author 7
Co-author 8
Co-author 9
Co-author 10
Co-author 11
Co-author 12
Co-author 13
Co-author 14
Co-author 15
Co-author 16
Co-author 17
Co-author 18
Co-author 19
Co-author 20
Abstract Content
Introduction
虽然 neddylation 被认为在前列腺癌 (PRAD) 的进展中是必不可少的,但具体机制在很大程度上仍然难以捉摸。目前的研究调查了 neddylation-related genes (NRG) 作为 PRAD 中预后标志物的潜力。
Materials and Methods
PRAD 和 NRGs 的转录组数据来自公共数据库。采用差异表达分析和加权基因共表达网络分析结果的交集获得候选基因。随后,结合 Cox 回归分析和机器学习确定预后基因,然后建立并确认预后预测模型。为了结合临床特征更好地预测患者结局,构建了列线图。此外,还研究了免疫浸润、富集分析和药物敏感性,以加深对这些预后基因可能对 PRAD 产生影响的复杂机制的理解。然后,通过单细胞 RNA 测序 (scRNA-seq) 进一步分析 PRAD。最后,通过逆转录定量 PCR (RT-qPCR) 验证生物信息学结果。
Results
本研究确定了 3 个与 neddylation 相关的预后基因,并构建了具有良好预测能力的风险模型和列线图。免疫浸润分析发现,静息记忆 CD4+ T 细胞与浆细胞呈显著负相关。在基因集变异分析 (GSVA) 中,发现 131 条通路存在显著差异,包括黑色素生成、基底细胞癌和癌症通路。然后,药物敏感性分析发现,两个风险队列之间有 77 种药物存在显著差异,其中 AP.24534 和尼洛替尼在高危队列中反应较差,而 A.443654 和 BI.2536 则相反。通过 scRNA-seq 数据分析,鉴定出 17 个细胞簇和 9 个细胞类型,预后基因在所有关键细胞中的表达相对稳定。最终,RT-qPCR 结果显示 GRIN2B 在 PRAD 中的表达显著上调,而 GYPE 表现出相反的表达趋势。
Conclusions
本研究开发了一种 PRAD 预测模型,可以有效区分高危和低危水平的患者,为 PRAD 的临床管理提供重要指导。
Keywords
Prostate cancer, Neddylation, Prognostic gene, Single-cell RNA sequencing
Figure 1
https://storage.unitedwebnetwork.com/files/1237/9040d7c6a2639b2e69626d74ea73157b.jpg
Figure 1 Caption
GSVA, immunoscape and drug sensitivity based on high and low risk groups.
Figure 2
https://storage.unitedwebnetwork.com/files/1237/18d6deb9371914315e56f513cf47640c.jpg
Figure 2 Caption
Single-cell analysis.
Figure 3
https://storage.unitedwebnetwork.com/files/1237/228e6815f15a3894f0e2ca41fa78eb95.jpg
Figure 3 Caption
Downscaling and clustering of 9 key cell types.
Figure 4
https://storage.unitedwebnetwork.com/files/1237/aae25331d1a5f7e7580151ec2b842e1e.jpg
Figure 4 Caption
Proposed chronological analysis of key cells. The darker the blue, the earlier the cell differentiation. The lightest blue represents the most recently differentiated cells.
Figure 5
https://storage.unitedwebnetwork.com/files/1237/4b4df8e0962c0cbb31edd1dcc9d9eb9d.jpg
Figure 5 Caption
Temporal expression of prognostic genes in cells.
Character Count
718
Vimeo Link
Presentation Details
Session
Free Paper Moderated Poster(03): Oncology Prostate (A)
Date
Aug. 15 (Fri.)
Time
14:48 - 14:52
Presentation Order
18