Time | Session |
---|---|
13:30
13:45
|
John DavisUnited States
Speaker
Open Surgery Training: Is It Necessary in the Era of Robotics?The Future of Surgical Skills Evaluation: What Is on Your Wish List?Tips and Tricks in Challenging Cases of Robotic Radical Prostatectomy
|
13:45
14:00
|
Vipul R. PatelUnited States
Speaker
Lessons from 20,000 Robotic Prostatectomies: A Global Expert’s PerspectiveTechnical Considerations for Large Prostates over 100gmsTelesurgery: The Future of Surgery
|
14:00
14:15
|
Simone CrivellaroUnited States
Speaker
Single-Port vs. Multi-Port Robotic Prostatectomy: Balancing Innovation, Precision, and OutcomesThe Application & Limitation of Urological SP SurgerySingle Port Retroperitoneal Partial NephrectomySingle Port Prostate Surgery
|
14:15
14:30
|
Ketan BadaniUnited States
Speaker
Expanding horizons: SP for complex RAPNThe Future of Urological Robotic SurgerySingle-Port Robotic Partial Nephrectomy for Multiple or Large Renal TumorsHow to Standardize Training by AI-Learning from The Best Practice of Urological Robotic SurgerySP Partial Nephrectomy
|
14:30
14:45
|
Gang ZhuChina
Moderator
Enhancing Robotic Surgery with AI and Imaging Navigation: Bridging Precision and Efficiency
Wenjie ZhongAustralia
Speaker
Emergency Undocking in Robotic Urology Surgery - Preparedness, Protocols, and PracticeIntroduction:
Robotic surgery has revolutionized urologic procedures, offering precision and minimally invasive benefits. However, the complexity of the robotic interface introduces the rare but potentially catastrophic need for emergency undocking - a rapid disengagement of the robotic system in response to patient or technical emergencies.
Objective:
To review the current best practices, protocols, and preparedness strategies for emergency undocking during robotic urologic surgery, with a focus on multidisciplinary coordination, training, and outcome optimization.
Methods:
A structured review of the literature was conducted, including case reports, institutional protocols, and guideline recommendations from leading urological societies (AUA, EAU). In addition, procedural algorithms and simulation-based training approaches were analyzed to assess their impact on team performance and patient safety.
Results:
Emergency undocking occurs in fewer than 0.1% of robotic cases but is associated with high morbidity if delays occur. Key indications include sudden hemodynamic collapse, cardiac arrest, airway compromise, and robotic system malfunction. Simulation training has been shown to improve undocking times by up to 35%. Effective response hinges on predefined roles, verbal cues, and practiced protocols. Institutions with regular team drills report faster response times and better outcomes in high-acuity scenarios.
Conclusion:
Although infrequent, emergency undocking represents a critical moment in robotic surgery that demands rapid, coordinated team action. Implementing standardized protocols, reinforcing multidisciplinary simulations, and fostering a culture of readiness can significantly improve patient safety and surgical outcomes.
|
14:45
15:00
|
Yen-Chuan OuTaiwan
Speaker
ARUS–PRUS Partnership Ceremony: A New Chapter in Asia Robotic Urology CollaborationDear colleagues and friends,
It’s a great honor to witness the signing of this partnership between the Asian Robotic Urology Society (ARUS) and the Philippines Robotic Urology Society (PRUS).
This marks the beginning of a new chapter in regional collaboration—one that emphasizes shared training, joint research, and mutual support to advance robotic urology across Asia. PRUS brings energy, expertise, and vision to this partnership, and ARUS is proud to walk alongside you as we work toward higher standards and better outcomes for our patients. Let us move forward together—with unity, purpose, and innovation.
Congratulations to both ARUS and PRUS!Aquablation Revolutionizing BPH Treatment: A New Era of Minimally Invasive Therapy-Tungs' Taichung Metroharbor Hospital ExperienceIntroduction
Aquablation is a waterjet ablation therapy for benign prostatic hyperplasia (BPH) that has gained significant attention. While its efficacy, durability, and safety have been established across various prostate sizes (30–150 mL), local data on its efficacy, safety, and learning curve in Taiwan remain limited. Our team have been performed 85 cases between March 2024 and July 2025. This lecture presents the learning curve observed in the first 50 patients who underwent Aquablation for BPH, highlighting its role in revolutionizing BPH treatment.
Materials and Methods
We conducted a retrospective review of 50 consecutive patients who underwent Aquablation between March 2024 and February 2025, dividing them into two groups: Group I (first 25 cases) and Group II (subsequent 25 cases). Assessments included IPSS, QoL, uroflowmetry parameters (voiding volume, Qmax, Qmean, PVR), operative time, hemoglobin drop, Clavien-Dindo grade ≥2 complications, hospital stay, and urethral catheter duration.
Results
Patients in Group II were younger and had smaller prostates. Aquablation was successfully performed in all cases. IPSS, QoL, voiding volume, Qmax, and Qmean improved significantly and were sustained for three months, while PVR improved only in Group I. Operative time was significantly shorter in Group II, and hemoglobin drop was greater in Group I. Complication rates, hospital stay, and catheter duration were similar between groups.
Conclusions
Aquablation provided significant and immediate improvements in voiding parameters and symptoms, with sustained PVR benefits in larger prostates. Surgeon proficiency improved after 25 cases. Overall, Aquablation proved safe and effective, even in an unselected patient population. Aquablation represents a promising advancement that could transform the therapeutic landscape for BPH—particularly if costs are reduced.Experience of 100 Consecutive Hugo Robotic Radical ProstatectomiesIntroduction and background:
Dr. Ou’ surgical team of Tungs’ Taichung MetroHarbor Hospital performed the first Hugo robotic radical prostatectomy on May 9, 2023. In 2023, we published the results of the first series of 12 Hugo robotic radical prostatectomies performed. In 2024, we published a comparison of 30 Hugo robotic radical prostatectomies and 30 Da Vinci robotic radical prostatectomies. Professor Ou is the Hugo robotic arm instructor recognized by Medtronic. Many Southeast Asian doctors come to this Hospital to observe the surgery and learn.
Material and Methods:
We prospectively collected data for retrospective analysis and statistics from May 9, 2023 to April 30, 2025, performing 100 consecutive Hugo robotic radical prostatectomies. We compared the surgical results of 1-50 cases (group 1) and 51-100 cases (group 2). The data analyzed included basic information, age, risk of anesthesia, BMI , prostate-specific antigen, clinical stage, and Gleason score grade. The two groups were compared in terms of surgical difficulty, receipt of neoadjuvant hormonal therapy, obesity, prostate volume >70 g, prostate protrusion more than 1 cm into the bladder neck, previous transurethral resection of prostate, history of abdominal surgery, extensive pelvic lymphadenectomy, salvage radical prostatectomy, and time from biopsy to radical prostatectomy less than 6 weeks. The two groups were compared in terms of robotic console time, blood loss, blood transfusion rate, and surgical complications. We compared the two groups in terms of postoperative pathological staging and grade, the proportion of tumor, and the proportion of urinary control at one month and three months.
Results:
The study showed that the age of patients in the second group was slightly higher, but the statistical p value was 0.058, which did not reach statistical difference. The second group of patients had significantly higher rates of stage III, stage IV, lymph node and bone oligometastasis, with a p value of 0.021. The rate of neoadjuvant hormonal therapy received by the second group was 16 percent, which was statistically significant compared with 2 percent of the first group (p = 0.021). The rates of other surgical difficulty factors were the same between the two groups. The average blood loss of patients in the second group was 156 CC, which was significantly less than the 208 CC in the first group. The operation time and surgical complications were comparable between the two groups. The cancer volume of the second group of patients was significantly reduced compared with that of the first group (3.30±2.93 versus 5.09±5.24, p value=0.049). The reason was that more patients in the second group received neoadjuvant hormonal therapy, which significantly reduced the cancer. Both groups of patients had very good urinary control after surgery.
Conclusion:
We conclude that Hugo robotic radical prostatectomy is an effective and feasible method with extremely low complications and good recovery of urinary control function after surgery. After the experience of the first 50 operations, the surgeon will choose patients with higher difficulty, especially those receiving neoadjuvant hormone therapy, to perform the operation.Total Solution of Maintenance of Urinary and Sex Function during Robotic Radical ProstatectomyBackground:
Robotic-assisted radical prostatectomy (RARP) has become a preferred surgical approach for localized prostate cancer due to its minimally invasive nature and precision. However, the preservation of urinary continence and sexual function remains a significant postoperative challenge. Traditional outcomes have focused heavily on oncological safety. Yet, contemporary perspectives emphasize a more holistic view—embodied in the concept of the “Pentafecta,” which includes continence, potency, negative surgical margins, biochemical recurrence-free survival, and absence of perioperative complications.
Objective:
This presentation introduces a comprehensive and integrative approach aimed at maximizing functional outcomes—particularly urinary continence and erectile function—through a modified pubovesical complex-sparing RARP under regional hypothermia, supplemented with real-time nerve imaging, neurovascular preservation strategies, and biological enhancement techniques.
Methods:
We present data and experience from Tungs’ Taichung MetroHarbor Hospital (TTMHH), including a series of 3780 robotic procedures performed between December 2005 and July 2025. Among these, 100 cases were completed using the Hugo™ RAS system and 21 with the da Vinci SP™ platform. Our modified technique builds upon Dr. Richard Gaston’s pubovesical complex-sparing method, with the addition of localized hypothermia (24°C), near-infrared fluorescence (NIRF) imaging with indocyanine green (ICG), and application of dehydrated human amnion/chorion membrane (dHACM). In selected cases, nerve grafting with Axogen® technology was applied.
Results:
Initial results indicate a significantly improved early return of continence (95% by 16 weeks) and promising erectile function recovery, particularly in patients who received adjunctive therapies such as phosphodiesterase inhibitors or vacuum erection devices. The precision afforded by robotic technology enabled preservation of
prostate capsular arteries and accessory pudendal arteries. Localized hypothermia contributed to reduced tissue edema, minimized neural trauma, and improved nerve recovery. The use of ICG-NIRF allowed real-time identification of critical vascular landmarks, enhancing nerve-sparing accuracy. Preliminary analysis suggests our technique is both feasible and reproducible.
Conclusion:
The modified pubovesical complex-sparing RARP under hypothermia, augmented with vascular imaging and biologic materials, offers a promising paradigm for functional preservation in prostate cancer surgery. This total solution approach not only protects neurovascular integrity but also accelerates recovery of continence and potency.
Continued accumulation of clinical cases and controlled comparative studies are warranted to further validate the efficacy and long-term benefits of these techniques.
Significance:
This strategy reflects a patient-centered evolution in robotic prostate surgery, merging surgical innovation with anatomical preservation and technological augmentation. It represents an epic collaboration of surgical precision, team-based care, and thoughtful application of biomedical advances to improve quality of life outcomes in prostate
cancer patients.Total Solution of Maintenance of Urinary and Sex Function during Robotic Radical Prostatectomy
|